Linearization and connection coefficients for hypergeometric-type polynomials
نویسندگان
چکیده
منابع مشابه
On linearization and connection coefficients for generalized Hermite polynomials
We consider the problem of finding explicit formulae, recurrence relations and sign properties for both connection and linearization coefficients for generalized Hermite polynomials. The most computations are carried out by the computer algebra system Maple using appropriate algorithms.
متن کاملConnection and linearization coefficients of the Askey-Wilson polynomials
The linearization problem is the problem of finding the coefficients Ck (m,n) in the expansion of the product Pn(x)Qm(x) of two polynomial systems in terms of a third sequence of polynomials Rk (x), Pn(x)Qm(x) = n+m ∑ k=0 Ck (m,n)Rk (x). The polynomials Pn , Qm and Rk may belong to three different polynomial families. In the case P = Q = R, we get the (standard ) linearization or Clebsch-Gordan...
متن کاملGeneral linearization formulae for products of continuous hypergeometric-type polynomials
The linearization of products of wavefunctions of exactly solvable potentials often reduces to the generalized linearization problem for hypergeometric polynomials (HPs) of a continuous variable, which consists of the expansion of the product of two arbitrary HPs in series of an orthogonal HP set. Here, this problem is algebraically solved directly in terms of the coefficients of the second-ord...
متن کاملLinearization coefficients of Bessel polynomials
We prove positivity results about linearization and connection coefficients for Bessel polynomials. The proof is based on a recursion formula and explicit formulas for the coefficients in special cases. The result implies that the distribution of a convex combination of independent Studentt random variables with arbitrary odd degrees of freedom has a density which is a convex combination of cer...
متن کاملLinearization Coefficients for the Jacobi Polynomials
i P (α,β) ni (x) et en déduire une évaluation dans le cas particulier où n1 = n2 + · · ·+ nm. ABSTRACT. — The explicit non-negative representation of the linearization coefficients of the Jacobi polynomials obtained by RAHMAN seems to be difficult to be derived by combinatorial methods. However several combinatorial interpretations can be provided for the integral of the product of Jacobi polyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1998
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(98)00141-1